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19. Abstract

We also report ron the implementation of this method in a forestmanagement decision support system. This is a completely microcomputer-

based implementation, and is currently undergoing field testing for use in
planning the timing and intensity of timber harvests on nonindustrial forests
throughout the southeastern U.S.
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AN IMPLICIT/EUPLICIT APPROAC TO MULTIOBJECTIVE OPTIMIZATION
WITH AN APPLICATION TO FOREST MANAGEMENT PLANNING

Implici utility/value mi.mizati n and explicit utility/valu
a are identified as two major classes of multiobjective
optimization methods. The explicit methods have the advantage that they can
fully exploit the power of existing mathematical programming algorithms.
Their disadvantage is the high information burden placed on the decision
maker. Implicit (i.e., interactive) methods have complementary strengths and
weaknesses: they require less extensive information but do not lend themselves
as easily to optimizing algorithms. We develop a hybrid implicit/explicit
approach which attempts to combine the advantages of both. The idea is to
embed within the implicit method a procedure which periodically formulates an
approximate explicit representation of the multiobjective problem, and then
optimally solves it without user interaction. Operationally, the use of this
idea requires frequent solution of two nonlinear programs.

We also report on the implementation of this method in a forest
management decision support system. This is a completely microcomputer-based
implementation, and is currently undergoing field testing for use in planning
the timing and intensity of timber harvests on nonindustrial forests
throughout the southeastern U.S.

KE VOL)S: Utility/value theory, multiobjective programming, forest management.

There are numerous ideas and techniques available for solving

multiobjective optimization problems, and they have been surveyed, compared

and classified many times (e.g., Chankong and Haimes[1983], Cohon[1978], Cohon

and Marks[1975], Evans[1984], Goicoechea et al.[19821, Haimes et ai.[1975],

Harrison[1983], Ho[1979], Hwang and Masud[1979], Rosenthal[1985], Roy and

Vinke[19811, and Zelenyt1982]). In this paper we identify two categories of

multiobjective techniques - explicit utility/value maximization and implicit

utility/value maximization - and we develop a hybrid technique which combines

the strengths of both. We also report on the implementation of a forest

management planning system which is based on this hybrid approach.

The multiobjective optimization problem is defined as follows. We are

given a feasible region X and objective functions f, ....f K :X- .R We must find
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an x e X which yields a most preferred value of f(x)-(fl(x) ......fK(x)) over

the set V-(v: v-f(x) for some x E X).

Here one cannot avoid using a vague, subjective term like "most

preferred" because the multiobjective optimization problem is not well-defined

in any strict mathematical sense. Despite this drawback, the problem has

received wide attention in theory and practice, and useful mathematical

analyses have been brought to bear on it.

1. MEX I M IMPLICIT A

The explicit utility/value maximization approach is to first specify a

function U:V-R with the property that U(v1 ) > U(v2) if and only if v is

preferred to v2, and then solve

max U(f(x)) s.t. X e X. (1)

The techniques for assessing an appropriate U come from the field of

multiattribute utility/value theory (e.g., Dyer and Sarin(1979],

Farquhar(1984], Fishburn(1983], Keeney[1977], Keeney and Raiffa[1976], and

Ki-kwood and Sarin(19801). In this literature, utility theory and value

theory are distinguished by the presence or absence, respectively, of

uncertainty.

The great advantage of this approach is that it makes the vast body of

theory, algorithms, software and experience that currently exist for

single-objective optimization immediately available for solving multiobjective

problems.

In spite of this great advantage, the approach of combining

multiattribute utility/value assessmet: with mathematical programming has been

used infrequently and perhaps with relatively little notice. This is not due

2-
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to any lack of acceptance of multiattribute assessment techniques. To the

contrary, these techniques have been used widely, but their application has

been limited almost exclusively to situations in which X is so small that the

maximization of U is readily performed by total enumeration. (For typical

examples, see Hannan, Smith, and Gilbert[1983], Hobbs(1979], Keeney(1979,1980

and others. For rare exceptions, see Golabi, Kirkwood, and Sicherman[1981],

Gros[1975], Harrison and Rosenthal[1986], Keefer[1978], and Ringuest and

Gulledge[1983].) We argue that this is a circumstantial, not theoretical,

restriction (Harrison and Rosenthal[1984]). Nonetheless, it is fair to say

that the disadvantage (perhaps overestimated at times) of the explicit

approach is the information burden of having to specify a utility/value

function over all of V in advance of the optimization process.

The imi.licit uti y/lxja aAX aL&ASi2U approach, introduced by

Geoffrion, Dyer and Feinberg(1972] and extended significantly by many others,

removes this disadvantage. The implicit approach is also known as the

jtgcj approach because it relies on information obtained from the

decision maker during the solution process. Geoffrion et al.'s suggestion was

to attempt maximization of U without requiring explicit knowledge of the form

of U. This approach assumes that U exists and that it possesses desirable

properties (such as differentiability and concavity) but the approach never

calls for the evaluation of U. The algorithm is based on the Frank-Wolfe

nonlinear programing method (though other primal methods could be used as

well). When the algorithm requires information about the function being

optimized (e.g., a gradient value or a step size), it is obtained through a

computer/decision maker interaction. This dialogue can be structured so that

the decision maker's only task is to answer questions of the form: "which do

-3-
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you prefer, v1 or v2, or are you indifferent?" This information is sufficient

to enable all other steps of the nonlinear programming algorithm to be

executed by the computer (Dyer[1973]). Remarkably, under the assumption of

concave utility (which is consistent with economic theory, e.g.,

Baumol[1977]), this procedure converges to optimality. It may not be possible

to carry out the procedure long enough to achieve convergence, however.

Extensions and improvements to the implicit approach have been made by

Oppenheimer[1978], and Zionts and Wallenius [1976,1983], among others. One of

Zionts and Wallenius' most important improvements is to guarantee that each

iteration yields an efficient solution. A point is etficient if it is

impossible to find another point which is better with respect to some

objective and no worse with respect to all other objectives. Other

improvements involve ways of making the implicit approach converge faster. In

spite of the improvements, the disadvantage of the implicit approach is that

it cannot fully exploit the power of the mathematical programming algorithm

upon which it is based. This is because human interaction is required at each

iteration of the algorithm, so it is impossible to execute as many iterations

of an implicit procedure as one routinely performs of a purely computational

one.

Thus, the implicit and explicit approaches can be regarded as

complementary in their strengths and weaknesses. The explicit approach can

take full advantage of single-objective optimization technology but it has a

large information burden in terms of the fully specified utility/value

function. The implicit approach has a much smaller information burden at each

iteration, requiring only paired comparisons or other local information, but

it is much less effective at exploiting optimization technology.

-4-
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The approach of this paper is a hybrid of the implicit and explicit

approaches, extending and combining the strengths of both. Developing a

hybrid seems obvious when the complementarity of the implicit and explicit

approaches is exposed. However, except for the work of Oppenheimer[1978],

this idea has been overlooked. We build and expand on Oppenheimer's work,

demonstrate theoretical justification, and discuss the application of this

idea to a problem in forest management that motivated the development of our

implicit/explicit algorithm.

2. Structure of i;he Implicit/Explicit ARoroach

The key idea of the implicit approach is that, even though U is unknown,

the direction of the gradient V XU(f(x)) can be approximated (Geoffrion et

al.[1972]). The approximation requires the selection of one objective, say

fl, called the reference obiective, and the assessment of uau.al rates of

substitution

! s (f(x)) - au(f(x)) / u(f(x)) (2)

afi afl

if au/ff - 0, then

au(f(x))K
V U(f(x)) - MRS(f(x)) Vf (x). (3)

af I i-1

Geoffrion et al. assume aU/af I > 0 at all points (i.e., the decision maker's

desire for more f is insatiable), in which case the first term on the

right-hand side of (3) can be disregarded as a scaling factor and the vector

5



K

MRS(f(x)) Vfi(x) (4)

can be used as a surrogate for V U in the nonlinear programming algorithm used

to maximize U.

Without explicit knowledge of U, we can not expect to assess MRS i

exactly, but Dyer[1973] has shown how to obtain approximate values through a

series of paired comparisons between elements of V. The drawback of this

approach, as noted, is that there needs to be interaction with the decision

maker every time the gradient is to be evaluated, and therefore only a

relatively small number of nonlinear programming iterat ons are possible.

In the implicit/explicit approach we attempt to lessen this dependence on

the decision maker. However, we do not let the decision maker remain

uninvolved in the value maximization process, as in the explicit approach.

The idea of the implicit/explicit approach is as follows. First, we perform a

few iterations of the implicit approach during which we accumulate information

about the decision maker's preferences. Second, we use this information to

approximate an explicit representation of the decision maker's value function.

Third, we use this explicit function to define an explicit value maximization

problem (1), which we solve to optimality. We can then repeat this cycle,

until the change in the solution between successive cycles is negligible.

There are several important issues that we must resolve and specify

clearly before the above idea can be implemented.

1. What form should be assumed for the explicit value function?

2. How should the parameters of the explicit value function be
determined?

-6-
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3. How can we solve problem (1) with sufficient speed so that the
explicit optimization step can be embedded within an interactive
approach?

4. What should be done if the approximating explicit value function is
so inaccurate that the optimal solution to (1) is not preferred
by the decision maker to the previous incumbent solution?

5. How do we accommodate inconsistencies on the part of the decision
maker, especially early in the interactive process?

These are the major issues of implementation of the implicit/explicit

approach, and we address them in the following sections. Some issues can be

addressed with generality; others, particularly the third, are best approached

on an application-specific basis. This third question is especially

challenging in our forestry application, because problem (1) in this case is

fairly complex and our software is implemented on a microcomputer.

3. Forms 2 hExpici ValueFncion

Like Oppenheimer[1978], we have developed the implicit/explicit approach

for two different forms of the explicit value function U. We use the

deterministic additive and multiplicative forms found, e.g., in Dyer and

Sarin(1979]. Both of these forms require, for each fil the determination of a

sinale-attribute value functio (SAVF), ui(fi), which maps achievement of fi
-i

onto the interval [0,1]. This function is monotone increasing, with u (1)

the most desirable level of fi' and u (0) the least desirable level. A

common choice (e.g., Keeney[19791) is an exponential SAVF:
b" "l

ui(fi) - (1 - exp(bi)) (1 - exp(bifi)) (5)

where bi <0. We assume that fi has been scaled to have range [0,1], and that-i -i

the decision maker is insatiable with respect to fi, i.e. u (0)-0, u ()-i.

-7-
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The additive form of U(f) requires the determination of weighting

parameters w i such that

K

w -1 , w 1 0,

i-i

and then

K

U(f(X)) - w i ui(fi(x)). (6)
i-i

The multiplicative form requires parameters ko, kl . ... kK in addition

to the SAVF's. It takes the form

K
U(f(x)) - k0  f1 [1 + k0 ki ui(fi(X)) 1) (7)

i-i

subject to

K
I + k0 - H (1 + k0 ki) (8)

0 i-I

0 < k < 1, i-i .... K (9)

k > -1, and k 0 '0. (10)0 0

The underlying assumptions and axiomatic bases of these forms are given

in the decision theory literature, e.g., by Dyer and Sarin[1979],

Farquhar[1984], Fishburn[1983], Keeney and Raiffa[1976] and Kirkwood and

Sarin[1980].

4. Paramete Estimation fur ;ha Explicit Value Problem

Depending on the choice of the functional form for explicit value, we

must solve a constrained nonlinear least squares problem to determine the

function's parameters. In both the additive and multiplicative cases, our

approach to this problem is to derive an analytic expression for MRSi(f(x)) as

-8-
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a function of the unknown parameters and then solve for the minimum sum of

squared deviations between the derived and observed values. We allow the user

to specify the number of observed MRS values of x and MRS ( K) to use in this

estimation problem. In other words, the user determines the number of

iterations of the implicit approach to do in the first step of the

implicit/explicit cycle. This is a departure from Oppenheimer who uses a

fixed number of implicit iterations every cycle. We derive analytic RS

expressions and formulate the resulting parameter estimation problems below

for the additive and multiplicative cases.

4.1 Fomulation in re &ddJJ±vi Case

In the additive case with exponential SAVFs, the marginal rate of

substitution derived from (2), (5) and (6) is

MRSi(f(x)) - [wI b1 (l-exp(b )1 1 [wi bi (l-exp(b1 )]

[exp(bifi(x) - bIfl(x))]. (13

qSuppose the observed MRS values in the q'th implicit iteration are yi,

i-l,....K, q-I .... m and the objective levels are fq. Substituting the
i.

observations into (11) yields

MRSi(w,b) - [w bI (l-exp(bi)]1 [w bi (-exp(b 1)
fq - q)] 12

exp(b i i -exp1 12

The parameter estimation problem in the additive case is then the nonlinear

program in w and b given by

-9-
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m K

min ~ (MRS q(w, b) -q y~ 2  (13)

q-l i-I
s.t.

K

w-1 (14)

i-i

5 wV S 1-C i-i ... K (15)

b -S i-I . K. (16)

where e is a small positive constant to insure that b <0 and wi is strictly
i

between 0 and 1. The reason for the redundant upp6r bound in (15) is that it

turns out we can solve the nonlinear program while ignoring constraint (14).

This convenience is guaranteed by the following result.

Lin 1 (Harrison[1983] pp. 70-71): Lt (yb) be optimal

in the problem defined by (13), (15), (16). Then (cw,b)

is optimal in (13) - (16) where

-1

Due to this result, we can regard the parameter estimation problem as a

nonlinear program constrained only by simple bounds.

4.2 F in h Multilicative as

For the case of a multiplicative value function we derive an equation

thfrom (2) and (7), analogous to (11), and substitute the q observation, fq

y q into it, analogous to (12). This yields
i

-10-



F (1-exp(b fq)

q|II

(ki bi)exp(bifq)(l-exp(bl)) 1 + k0 kI  (lIexp(bl))

MRsq (k, b) 0 1 (17)* i
(k1 b )exp(b fq)(l-exp(bi)) I + k0 ki

1(i-exp(b

and the resulting formulation of the parameter estimation problem for the

multiplicative case is the nonlinear program in k and b given by

min (MRSq (k,b) _ - ) (18)

q-1 
i-I

,. s.t. 1+k - l (1 + kki) (19)
0 i

b 1 -e i-i ..... K (20)

:s k 1-e, i-I .... K (21)

. k0 > -i+e, (22)

k0 0 0. (23)

This problem turns out to be much more amenable to solution than one would

suspect considering the forboding appearance of (17), and the nonlinear

constraint (19). Again, a key result is the freedom to ignore the non-bound

constraint (19).

L 2. (Harrison[1983], pp. 81-83.): Let (k,b) be

optimal in the problem defined by (18), (20) - (23). Then

(k,b) is optimal in (18) - (23) where

k0 -k/c

k I - c ki , i-I,... ,K, andi-

c - k0 [ H ( 1 + k 0 ki) 1- ]
i

As for the nonconvex constraint (23), one obvious approach would be to

separate the problem into two cases, k0 > 0 and k0 < 0. This turns out to be

e0

- 11i-



unnecessary, however. The original reason for requiring k 0O is that k0

appears as a quotient in (7). But, when k0  0 0, the multiplicative form does

not become untenable; in fact, in the limit it approaches the additive form

(Keeney and Raiffa(1976]). Thus, we attempt to solve the problem without

constraint (23), and if k0 becomes sufficiently close to zero we switch to the

additive form.

4.3 Solution 2 ;1M Parameter-Esimation Problems

By virtue of Lemmas 1 and 2, we can treat the parameter estimation

problems as nonlinear programs with simple bounds. The method we have chosen

for solving these problems is the BFGS (Broyden-Fletcher-Goldfarb-Shanno)

quasi-Newton algorithm. This is usually described as an unconstrained

nonlinear programming technique (c.f., Dennis and More[1977], Fletcher[1980]

or Luenberger[1984]), but it can be adapted for bound constraints quite

effectively. One modification is to constrain the line search so that bounds

are not violated. As for direction finding, let Hk denote the approximated

inverse Hessian matrix at the kth iteration of BFGS. (Hence, the search

direction is -Hkgk , where gk is the current gradient.) Fletcher[1980]

thdemonstrates that if the j row and column of Hk is zeroed, then willthodten wl

retain these zeroes and the jth variable will not change in the k+lst

iteration. So if a variable moves to its bound during a BFGS update, we zero

out its row and column in H. In subsequent iterations, we check the

corresponding partial derivative, and if the sign is appropriate for leaving

the bound in the feasible direction we insert a +1 in the corresponding

diagonal element of H. Our implementation of this modified BFGS uses the

Goldstein-Armijo conditions (c.f., Fletcher[1980]) for sufficient improvement

- 12 -
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per iteratfon. It also checks each proposed search direction to verify that

it is a descent direction. Infrequently, it is an ascent direction due to

roundoff error. In that case the program reverts to steepest descent by

resetting H to identity, and then continues again with the modified BFGS

algorithm.

If the sum-of-squares objective function, (13) or (18), of the

parameter-estimation problem were strictly quasiconvex, then we would be

guaranteed that the point to which the modified BFGS converges is a global

optimum. Unfortunately, these functions do not necessarily satisfy strict

quasiconvexity. (We have found counterexamples.) However, we conducted a

large amount of empirical testing that indicates local optima are unlikely.

For each example in a set of parameter estimation problems, we restarted the

modified BFGS at a number of distinct starting points. After transforming the

result according to Lemma I or 2, we found that the modified BFGS converged to

the same point regardless of the starting point ev. time. In another set of

tests on these problems, the inequality that defines strict quasiconvexity

(c.f., Bazarra and Shetty[1979]) was tested at millions of points over a grid

of the feasible region and turned out to be satisfied more than 98% of the

time. Considering that our purpose in solving the nonlinear program is to

construct an a value function for 2ne iteration of an interactive

algorithm (for a fl i& &IuhX defined problem), the small risk of local

optima is bearable. The alternative of constructing some type of nonconvex

optimization scheme is probably not computationally feasible and is certainly

not cost-justified.

- 13 -
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5. Recovery J=o Unsuccessful Mvesf

If our approximating explicit value function is sufficiently poor, then

optimizing it may actually lead to a less preferred solution than the one we

started from. Oppenheimer(1978] remarked that this problem may arise because

value functions are typically much more accurate in the small (i.e., in the

vicinity of the point where they were assessed) than in the large. We recover

from this situation by reverting to a purely implicit iteration. In this

fashion, the implicit/explicit algorithm maintains the global convergence

property of the implicit approach, while substantially improving the local

convergence.

Our approach can tolerate some degree of inconsistency in the decision

maker's responses, especially early in the interactive process. We have

observed that decision makers are most likely to exhibit inconsistent behavior

early in the interactive process, as they "learn" the effects of tradeoffs.

Our implicit/explicit approach deals with this behavior by limiting m, the

number of MRS observations to be used in the parameter estimation. Our

estimation of the underlying value function needs enough information to make

it reasonably accurate, yet not so much information so that inconsistent

choices are "remembered" indefinitely. The value m-5 accomplishes this in our

forestry example.

6. Summary of 2M Implicit/Explicit Approach

We summarize the results of the preceding sections into the following

statement of an approach for multiobjective optimization.

- 14 -
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T- ITT-;- 0

Step 0: [Initialization] Choose x I X, and r a convergence tolerance,

set k-1, J-1, and m-the number of observations used in

approximating the decision maker's explicit utility function. We

require m a K.)

Step 1: [MRS Assessment] Assess the decision maker's tradeoffs at the

k
current point, x . (We use a modified form of Dyer's[19731

k k
procedure.) This results in y2 .  YK If j<m go to Step 4,

otherwise set J-a and go to step 2.

Step 2: [Derivation of the Explicit Value Function] Solve a parameter

estimation nonlinear programming problem, (13-16) or (18-23), to

derive an explicit representation of the decision maker's value

function, based on the past m observations. If the assumed form

of the value function is additive use the modified BFGS algorithm

of Section 4.3 and then apply Lemma i. If the assumed form is

multiplicative, use the modified BFGS and Lemma 2.

Step 3: [Maximization of the Explicit Value Function] Solve to optimality

the explicit value maximization problem, (1), resulting in the

k k ksolution z . If f(z ) is preferred to f(k ) go to Step 5,

otherwise go to Step 4.

Step 4: [Direction-Finding Subproblem for the Implicit Value Function]

K

Solve maximize Yk y f (X) z, s.t. z e X,

i-2

resulting in z .

*. Step 5: [Step-Size Limit] Set d -z -X . If Step 4 was executed set t-1,

otherwise determine the step-size maximum t-max(t x +tdE X).

- 15 -



kStep 6: (Line Search] Determine the step size parameter, t That is,

find the most preferred solution on the line (xk +d k0st- ). (We

use Dyer's(1973] interactive line-search method which requires

only paired comparisons of elements in objective space.) Set

Sk+-x k+t kd k k-k+l, j-j+l. If I - 11 < r, stop. Otherwise

go to Step 1.

To conclude the methodological section of this paper, we offer a few

comments. First, note that the features that distinguish the

implicit/explicit method from the purely explicit approach are Steps 2 and 3,

and they both require solution of a nonlinear programming problem. In order

for the method to be useful in practice, it is imperative that these programs

be solved very quickly. This is because the method also calls for interaction

(in Step-i I and 6), and most decision makers are unwilling to tolerate long

response times during the dialog. The modified BFGS used in Step 2 has been

adequate in this regard. As for the Step 3 nonlinear program, we must address

this issue on an application-specific basis, and do so in the next section.

Second, as intended, the implicit/explicit method has the implicit

method's advantage of a light information load on the decision maker. He or

she only has to make binary comparisons of points in objective space, V. The

dimension of V, which is equal to the number of objective functions, is

typically small (less than eight), so that making these comparisons is not

difficult.

Third, the implicit/explicit method inherits another advantage of the

implicit approach, namely, it permits the decision maker to learn during the

person-computer interaction. Often a decision maker gains new insight into

the dynamics of a problem through the solution procedure. Therefore the

- 16 -
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decision maker's preference structure may change throughout the course of an

interactive dialog. Research by Dickmeyer[1983] reinforces this benefit of

person-computer interaction.

Finally, the implicit/explicit approach attempts to exploit the

advantages of explicit methods. To hasten convergence it periodically

formulates an approximate explicit representation of the multiobjective

problem derived from the previous responses of the decision maker, and then

solves this problem to optimality without requiring human intervention.

7. Forest= Applctio

The remaining outstanding question from Section 2 is: how do we solve the

explicit value maximization problem? As noted earlier, this issue requires an

application-specific approach. Here we describe the forestry application that

motivated our work.

Forest management involves the following decisions (Smith[1962]):

1) when to harvest timber,

2) how intensively to harvest,

3) how to regenerate the forest after harvest (natural regeneration

versus planting),

4) the nature and timing of cultural treatments such as fertilization and

pruning.

A set of specifications of these decisions is called a ha tirgime (or

simply a regime). The first two of the above decisions are particularly

critical because they must be made far in advance of the others. Since our

model is used for long-range planning, we are primarily concerned with these

two early decisions, the timing and intensity of harvests.

- 17 -
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Forest managers seldom apply the same regime to an entire landholding.

Rather, they partition the property into sad and specify regimes for each

stand individually. Delineating stand boundaries is often difficult, and is

part of the forester's art. Care must be exercised because the partitioning

of the forest into stands can have a major influence on the outcome of the

planning and analysis. The guiding principle is to obtain approximate

homogeneity within each stand of speciation, age, site index (a measure of

forest productivity), and stand density.

The goal of forest management is to maximize the "utility" of the forest

property to the landowner through time. In the past this use of the term

utility has been construed as maximizing volume growth or maximizing economic

return. More recently it has been interpreted to include multiple management

objectives. An important enunciation of this concept was the Multiple Use and

Sustained Yield (MUSY) Act of 1960. MUSY is one of the statutes that define

management practices on the U.S. National Forests. The act provides for

... the management of all the various surface resources of
the National Forests so that they are utilized in the
combination that best meets the needs of the American
people ... and not necessarily the combination of uses
that will give the greatest dollar return ... (MUSY Act of
1960 Section 4(a),

The literature on optimization applications in forest management planning

is extensive and diverse. (See Bare et al.f1984] for a review.) Before

describing the formulation of our forest management model, it is necessary to

provide some background concerning the target user group. It turns out that

the special needs of this group have rarely been addressed in this literature,

in spite of the group's controlling interest in the U.S. timber supply.

- 18 -
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7.1 a 1 Sector 2 ;e U.. Frest Economx

There are three kinds of owners of forest lauds in the United States:

1) government, 2) corporations, and 3) nonindustrial private forest landowners

(NIPFs). The NIFFs are individuals who own small tracts (typically less than

100 acres) and who generally do not engage in forestry as a prime source of

income.

NIPFs own the majority (58%) of forest land in the United States (USDA

Forest Service(1978b]), and thus have an important influence on the nation's

potential supply of timber. The influence is particularly strong in the

Southeastern states where NIPFs own 71% of the commercial forest land

(Ross[19801).

Lands in the NIPF sector have historically yielded less timber per acre

than industrial forest lands. Some factors contributing to this productivity

difference are beyond the immediate control of the NIPF, such as differences

in land quality and economies of scale in the industrial sector. But it has

also been documented in numerous studies (reviewed by Kurtz and Crouse[1981])

that NIPFs underutilize forest management practices and information. The

studies have shown that increasing the use of intensive management could lead

to greater yields, which would benefit both the NIPF and the nation as a

whole. According to Satterfield[1980], the NIPF's deficiency in forest

management is due to:

1) the long period between investment in forest management and the

realization of a return at harvest,

2) a lack of capital to make investments,

3) a lack of information as to what an individual's land can produce,

and how to manage to achieve that potential,

- 19 -
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4) perceived low rates-of-return on investments,

5) diverse objectives of land ownership beyond just financial return.

7.2 Lessons Lrom Ea ExDerience

Providing the NIPF with a detailed forest management plan is a

*, time-consuming activity. It first requires considerable effort in the field

to measure the landowner's resources. It then requires assessment of the

landowner's objectives and the generation of alternative management strategies

based on these objectives. The Tennessee Valley Authority developed a

computer-assisted tool for NIPF management planning. This tool, known as the

Woodland Resource Analysis Program (WRAP) (Hamner(1975], Harrison and

Rosenthal[19861), recommended harvesting strategies using an explicit

multiobjective optimization approach. A nonlinear additive explicit value

function was assessed with a simple questionnaire administered in the field

and it was maximized by a coordinate ascent search. During the period

1977-1983, the program was used by more than 1800 landowners, representing

hundreds of thousands of acres of NIPF land.

The program was extremely well-received in the NIPF sector. In a study

by the USDA Forest Service[1978a] of NIPFs who had used WRAP, 90 percent found

the program sufficiently understandable, 76 percent found it sufficiently

personalized, and 97 percent believed that WRAP was applicable to their

situation.

However, in sl e of this reception, there were three major areas of

deficiencies in WRAP.

1) WRAP's multiobJective optimization methodology had to be very simple

because of the solution environment that was imposed upon its
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design. The assessment of the landowner's preferences was

confined to a single brief interview, conducted by a forester,

without the benefit of computers. The forester's data were

submitted for batch processing on a mainframe computer, and the

results of the optimization were presented to the landowner about

two weeks later. (WRAP's came into use in 1977, prior to the

widespread availability of microcomputers.)

2) WRAP optimized each stand individually. Thus it did not permit either

the use of constraints dealing with the entire landholding or

the ability to tradeoff sacrifices of benefits on one stand for

increases in another.

3) The simulation models that were used to predict the response of the

forest to various harvesting regimes needed improvement. They

were not uniformly providing face-valid results in the view of

experienced foresters.

Based on our experience with 1800 users, and based on our perceptions of

both the positive and negative aspects of WRAP, we designed and implemented a

new system. It is called rORKAN or Forest Management Planning System.

FORMAN's design goals included:

1) the ability to directly address multiple, conflicting objectives,

2) the requirement of no more than one session with the landowner to

elicit preference information,

3) a microcomputer implementation,

4) an interactive approach,

5) an integrated management of the entire forest property, not just one

stand at a time,
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6) the ability to impose property-wide constraints on resources, such as

yearly requirements of cashflow and labor, and

7) improved models for simulating forest growth and yield, and for

simulating wildlife benefits.

7.3 Formulation .9f th FORMAN Model

INDICES:

i - stands

j - harvesting regimes

k - objective functions

t - time periods (years).

The ranges of these indices, throughout our discussion, are i-i. I,

J-, . .... Ji k-l, ... ,K, and t-l....T, where I, Ji' K, and T are given data.

PRIMARY DECISION VARIABLES:

x i - the percentage of stand i to be managed under regime J, with

0 :5 x 1 1.

These variables can take on fractional values, which are interpreted as

recommendations to subdivide stands. For example, if xij - 1/2, then stand i

will be partitioned into two or more substands, one of which contains half the

acreage and is managed by regime J. As will be seen, there is a constraint on

the amount of subdivision which can take place. For this purpose we define:

AUXILIARY DECISION VARIABLES:

6ij -1 if xii > 0, 0 otherwise.

- 22
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OBJECTIVE FUNCTIONS:

f - the amount of wood harvested,
1#

f2 - the expected present value from the sale of timber products,

f3 - a measure of habitat suitability for deer,
f3 " a measure of habitat suitability for squirrel, and

f5 - a measure of habitat suitability for quail.,

Obviously there are many other forest benefits of interest to forest

landowners; but we wished to limit the objectives to a manageable number,

especially in an interactive procedure. The group above is based on past

experience with .assessing landowner's concerns in the NIPF sector. Moreover,

these are benefits for which quantitative relationships exist that permit

their inclusion in an optimization process.

Some comments on the wildlife benefits are in order. FORMAN's use of

habitat suitability as a model of wildlife benefit is in contrast to WRAP,

which attempted to use actual population levels. One reason for this design

change is that habitat suitability is much more accurately determined than

population. Another reason for the change is it reflects the fact that timber

harvesting decisions have only indirect effects on animal populations whereas

they have direct and measurable effects on habitat suitability. Our habitat

suitability measures range from zero, which is totally unsuitable habitat, to

one, which is ideal habitat. See Harrison(1983] and Williamson(1983] for a

detailed technical discussion on the derivation of these benefit models.

The three wildlife species who habitats are modeled in FORMAN were chosen

because they are associated with the various stages of forest succession.

High quail production most often occurs in open fields or young stands. Deer

habitat requirements are well satisfied by medium-age stands (of the proper
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type). And squirrel habitat is best met by mature, mast-producing stands.

Therefore these wildlife species tend to be conflicting in their habitat

requirements, which has useful theoretical implications for multiobjective

optimization. Keeney and Raiffa[1976] point out the importance of removing

correlations between objectives to avoid the problem of redundancy in the

analysis of impacts.

The objective functions are linear,

fk (X) - cijkt xii fork-i.....5 (24)

ii t

where the coefficients are

c l volume of timber removed (cubic feet) in year t on tract i under
ijlit

harvesting regime J,

c ij2t- present worth in dollars of management activities in year t on

tract i under harvesting regime J,

c Lj3t - acreage-weighted habitat suitability index for deer in year t on

tract i under regime J,

c4t - acreage-weighted habitat suitability index for squirrel in year

t on tract i under regime J,

cijgt - acreage-weighted habitat suitability index for quail in year t

on tract i under regime J.

These coefficients (and their associated regimes) are generated by a

simulation program that is executed prior to invoking the multiobjective

optimization program (Hepp and Williamson(1985]).

There are three classes of constraints in the FORMAN model.

STAND USE CONSTRAINTS:

xij i V1 i (25)

244
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These generalized upper bound constraints prevent us from prescribing

harvesting regimes to more acreage than is available.

CASHF-OV AND WOODFLOU CONSTRAINTS:

I kt < cij'kt x[j I "t k-l,2, and V t (26)

where bkt and Ukt are user-specified lower and upper bounds on cashflow (k-I)
r.t

and woodflow (k-2) in year t. These are linking constraints in the sense that

they could not have been handled had the model been designed (like WRAP) to

treat each stand separately.

In practice, there are a variety of reasons for including these

constraints. For example, a landowner might wish to limit the cashflow in any

one year because of the corresponding tax liability, preferring to spread this

return over a few years. Alternatively, a landowner might wish to ensure a

minimum level of cash in specified future years to meet an anticipated need,

such as financing a college education. The timber-flow constraints are

likewise grounded in reality. For example, we have worked with landowners who

employ timber harvesting crews on a year-round basis. In this case the

landowner wishes that the optimization model recommends harvesting schedules

that keep his harvesting crew reasonably employed throughout the horizon.

Many other examples exist that recommend the inclusion of these linking

constraints. It is possible to model other common resources, in addition to

cash and wood, with constraints of this form.

PARTITIONM CARDINAIITY CONSTRAINTS:

I 6iJ pi V i (26)

x S 6 V ij (27)
ii ii

6ij E (0,1) V ij (28)
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Here p i is a user-specified positive integer denoting the maximum number of

substands into which stand i may be subdivided.

Partitioned cardinality constraints are a generalization of cardinality

constraints, as discussed by Tanahashi and Luenberger[1972] and Rubin[1975].

A technique for handling them heuristically is given in the next section.

There are several practical reasons for imposing these constraints. If

the landholding is subdivided into too many parts, then implementing a

recommended harvest plan may become managerially infeasible. Furthermore, if

a substand is too small, then it may never be economical to bring in a

harvesting crew. (Mare generally, the linear objective functions f kassume

kT

that the benefits obtained in a substand are proportionate shares of the

c ijt.But this may be false for very small substands due to the fixed costs

ijkt

of harvesting and management.)

ii"

II

Tor P Ai z thi a r secio psthe inO eger mdalnofn the foaximu nugmer o

S~t.

x hc 1-1. I,2n a yb sdv e . J.

ii i

helanholin is (0,d1)ididi. Ioan part,. .hnipeetn

ii ji.
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where f(x) is given by (24) and U[f(x)] is the (unknown) value function of the

decision maker.

In practice, the number of stands (I) has ranged from 2 to 10, the number

of regimes per stand (Ji) from 5 to 40 and the number of years (T) is usually

30.

7.4 Comuter Implementation nSolutio

The FORMAN system is an implementation of the implicit/explicit

multiobjective optimization approach to the FMP model. Here we focus on two

issues of implementation and provide a description of their resolution in

FORMAN. Specifically, we deal with:

1) a heuristic solution of partitioned cardinality constrained linear

programming (PCCLP) subproblems, and

2) solution of the explicit value maximization problem.

The PCCLP must be solved repeatedly as a subproblem within our algorithm

for handling the explicit phase of the implicit/explicit approach.

Unfortunately, the PCCLP is NP-complete; because as Wood[1986] has shown, if

there were a polynomial-time algorithm for PCCLP, there would also be a

polynomial-time algorithm for the "exact cover by 3-sets" problem, which is

NP-complete (Garey and Johnson(1979]). Intractability aside, a heuristic

approach to the PCCLP is reasonable in the forestry application because:

1) the multiobjective procedure requires the solution of a number of

partitioned cardinality constrained LP's in an interactive

setting,

2) we implemented FORMAN on microcomputers, and

3) the partitioned cardinality constraints are among the "softest"

problem constraints. (Following the approach of Brown and
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J

Graves(1975] and Liebman-et al. (1986], we allow some of the

constraints to be "elastic" or "soft", which means they may be

violated at a linear cost.)

In light of these considerations, we have derived a heuristic technique to

deal with the partitioned cardinality constraints. It is based on the

following result.

Leaa 3 (Harrison[1983], pp. 123-124)

Given the problem:

max cx

S.t. Ax - b (PCCLP)

X I pi i-1 .I

x 0,

where the variables are partitioned into I mutually

exclusive and collectively exhaustive sets, and I x+ I

denotes the number of positive variables contained in the

i'th set. If there exists an optimal solution to PCCLP,

then there exists a basic optimal solution.

This lemma demonstrates that an extreme point enumeration technique for

the PCCLP will eventually find an optimal solution. Returning now to our

PCCLP heuristic, it is composed of two rules: 1) when considering variables to

price out, we price out first those that will not lead to a violation of

cardinality (if any), and 2) we rescale the reduced cost of each variable as

it is priced out to reward/penalize a variable with respect to its current

contribution to the cardinality constraints. However, the sign of the reduced

cost is not changed so as to maintain the guaranteed convergence

characteristics of the simplex implementation. The essence of this idea is to
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increase the attractiveness of nonbasic variables that will not lead to

cardinality constraint violation.

This heuristic does not guarantee satisfaction of the partitioned

cardinality constraints, but if they are violated, the violations tend to be

dispersed throughout the stands, which keeps the solution managerially

feasible.

The final aspect of implementation is the maximization of the explicit

value function, as required in Step 3 of our implicit/explicit approach to

multiobjective optimization. This problem is given as the forest management

problem (FMP), where U(f(x)] is defined by either (6) or (7). Note that when

the partitioned cardinality constraints are handled implicitly by our

heuristic procedure, the resulting problem is the maximization of a nonlinear

objective function subject to a linear set of constraints. To solve this

problem we use the well-known Frank-Wolfe algorithm (Wolfe[1970]).

This algorithm was chosen because of its good initial convergence

characteristics (Hogan[1971], Wolfe[1970]), and because it was compatible with

existing software in FORMAN. Given that a computer procedure already exists

for solving the Frank-Wolfe steps in the Geoffrion-Dyer-Feinberg algorithm, it

is relatively easy to implement this approach.

8. Summary ad Conclusions

We presented a method for multiobjective optimization that combines the

complementary strengths of two existing approaches - implicit utility/value

maximization and explicit utility/value maximization. The idea of the

combined approach is to embed within the implicit method a procedure which

periodically formulates an approximate explicit representation of the
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multiobjective problem, and then optimally solves it without user interaction.

Operationally, the use of this idea requires fast and frequent solution of two

nonlinear programs. The first nonlinear program is for estimating the

parameters of the approximate explicit value function. The second nonlinear

program is to maximize the explicit value function subject to the constraints

of the original problem.

Our development of this approach was motivated by a problem in forest

management. This problem concerns the timing and intensity of timber harvests

on nonindustrial private forest (NIPF) lands. NIPF lands constitute the

majority of commercial timberlands in the U.S., but the operations

research/decision sciences literature has been essentially devoid of

approaches for meeting the special needs of this important group.

We have developed a model for this forest management problem and an

implementation of the implicit/explicit multiobjective approach for solving

it. The model and solver are embodied in a system called FORMAN, which is

currently undergoing field testing throughout the southeast by a number of

academic, government, and private foresters. The Tennessee Valley Authority

has provided FORMAN as a replacement for an earlier system (WRAP), which has

been used by over 1,800 landowners.

An important aspect of FORMAN's development is that it is implemented on

a microcomputer. In this environment it was especially challenging to solve

the nonlinear programs quickly enough to be useful within an interactive

procedure. The algorithms we employed have met this requirement. (We used a

modified BFGS algorithm for the parameter estimation problem and the

Frank-Wolfe method with heuristic treatment of the partitioned cardinality

constraints for the explicit value maximization problem.)
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As a tangential development, the partitioned cardinality constraints are

an interesting modeling device which may have applications in other areas.

For example, they may apply to a production/blending problem in which xij is

the proportion of product i to be composed of ingredient J. One may wish to

limit the number of ingredients in the product for the sake of efficiencies in

purchasing, inventory control and/or processing.

We anticipate that FORMAN will see extensive use in the field as its

predecessor did, and we expect that this experience will lead to additional

applications of the implicit/explicit approach.

It is a pleasure to acknowledge Don Forbes, Larry Hamner, Todd Hepp, Greg
Hendricks, and Jim Williamson of TVA for their contributions to the
development of FORMAN and its associsted pre- and post-processors. We are
also grateful to Bruce Schmeiser of Purdue University for many valuable
suggestions to improve the presentation, and to Kevin Wood of the Naval
Postgraduate School for providing a proof of the NP-completeness of the
partitioned cardinality constrained LP.
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